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Presentation outlines

* Necessity to go colder with the future upgrade of the LHC (HL-LHC plan)

* Issues: temperatures unattainable by current CO, cooling technology

» Definition of a new cooling cycle using Krypton

» Definition of the different transient modes encountered during gradual cooldown
» Design principles to base future design

» Dynamic modelling and control logic

» Prototype to test cooling concept



®NTNU Current 2PACL system (CO.,)

* Liquid / two-phase pumped loop system
 Use of dependency temperature-pressure in the two-phase
area for monitoring of the detector

Advantages such as:

* Remote control through accumulator (heating and cooling)
e “Easy” startup in liquid phase, no risk to damage the detector
by pressurization of the system

But:

= CO, triple point = -56 degC

= Starts becoming less performant at very low pressure (AP
induces much larger AT = uneven cooling)

" Pump needs subcooling at the entrance to avoid risk of
cavitation = min temperature in the detector = -40 degC
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Viren Bhanot, Dynamic simulations of Phase 2 detector cooling system, Forum on Tracking Detector

Mechanics 2022, Frascati.
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@NTNU  Aim of the study

Krypton physical properties
(T = -64°C, px = 55 bar)
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New colder fluid Krypton
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LEGEND:
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Colder cooling system with Krypton
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* New ejector-supported cycle with feature of being

able to operate either in supercritical or transcritical
state

 Still fulfilling detector requirements such as “passive”

expansion upstream detectors, etc..

* Ejector becomes the main regulator for detector

operation

Reliability as main concern, so:

= Compression stage oversized to gain additional degree
of freedom

= Additional valve upstream suction nozzle of the
ejector for performance regulation
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Ejector working principle

* Device using energy from a high-pressure stream to
What is an ejector, and how does it work? entrain and pre-compress a low-pressure stream

* Ejector characteristic curve:
A H

o Chocking

a2 | Throat | | Exit | [Mixing chamber |

Off-design mode

Pressure

v

Pressure lift

Entrainment and pressure lift cannot be high at the same
time

Intake due to Pressure increase due to . . .
pressure differential reducing flow velocity  If a large flow is entrained from low side, only small

jump in pressure
e Little amount of flow can be lifted up to 12 bar

 Extremely dipendent on geometry and refrigerant

https://www.danfoss.com/fen/serwce-and-su pport/f:ase-s.torles/dcs/the-danfoss-multl- prope rties
ejector-range-for-co2-refrigeration/
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= Use of Krypton problematic due to very cold temperatures (T,
= Xenon proposed thanks to its warmer critical temperature (= 17degC)
= Required to precondition the unit to start in supercritical phase

Krypton

Pressure [bar]
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crit

~ -64°C)

Xenon demonstrator for the Krypton cycle
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Design principles of the Xenon test-rig

Supercritical state unknow, design based on two-

phase area
Design follow ejector’s nature

Two-phase area interesting only at high reduced

pressure

Estimation flow and
pressure drop in the
evaporator (VQ limit 35%)

N

Ejector strategy control through
different setpoints

A

* Inthe same manner of the 2PACL, all starts from the
detector section (gas heating/evaporator)

multiple lines require AP
= 4/5*AP

U
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Estimation of the ejector
pressure lift
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Hydraulic balance of {

Design concentric line
such to have low AP on
both sides

Cycle simulation (system
operation curve)

Constant pressure lift }

2

Optimum ejector geometry from
crossing of system-ejector curve

Controlling the pressure

> |ift means accurate control
detector outlet pressure
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Designh evaporator & concentric line

-83 € (Equivalent Krypton temperaturerange) = -
0.65 . ; ; ; ; ; . ‘ .

—6— Pressure drop
—#— Mass flow

0.6

0.55 -

05 r

045

04F

035 o 45

Evaporating temperature [°C]

= Liquid stream
Two-phase stream
— — — - Setpoint detector outlet

Insulation Two-phase flow |

Liquid flow 4

Concentric line length [m]

Mass flow [g/s]

52

518

A
o>

a
S

Pressure profile [bar]

A
o

51

Pressure

Temperature fluid
Wall temperature
— — —-Temperature setpoint |

0 0.2 0.4 0.6 0.8

Cooling pipe length [m]

58 ~
Saturation line
57 .’ Hot stream
J-‘ Cold stream
56+ i — — — - Setpoint defector | 7
! e Vapor quality line

551 1
S 541 135 %
£. 1
@ i
5 53 !
0 I
o i
T 521 |

1

<2 I Y S e

50 I

49

48 I L [ 1 1 L

50 55 60 65 70 75
Enthalpy [kJ/kg]

80

Temperature [°C]

Noble gas high molecular weight = low latent heat
Close to critical point latent heat tends to zero
Case at 10 degC design case (highest flow)
Capillary sized according to flow expected

Constant pressure lift strategy = overflow through
the detector for lower reduced pressures

Concentric line designed such to potentially cool
down the liquid to same temperature detector
outlet (same principle in 2PACL)

At high-reduced pressures fluid compressible 2>
bypass needed to trigger boiling at the evaporator
entrance
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e Detector setpoint = 10 degC
* Bypass to promote boiling at the entrance

e Detector setpoint = 0 degC

* Overflow €< ejector control strategy

* Pressure lift = f(mass flow)

* Capillary producing main AP in the loop 2

almost constant flow

* Side-effect = larger A T inlet-outlet evap
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Dynamic modelling : startup

* Geometric parameters detector loop + real size components (receiver, compressor, gas coolers all CO, high-pressure
rated) with the aim to keep the system volume (charge) as low as possible

» Supercritical state = pressure-temperature independent on each other, receiver does not act as buffer tank

 Only injection-withdrawn of refrigerant mass controls the pressure

* Cooling power unknown = controlling inlet temperature to the detector to avoid thermal shocks

SIM

* Dymola used as tool for simulation of complex systems
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Startup without thermal shocks

Implications of the supercritical cycle:

= Once the compressor start the pressure will fall > temperature drops and
possible thermal shock

= Excessive cooling through HP gas cooler = thermal shock

= Detector loop passive = flow distribution ditactes pressure-temperature
profile

75

How to develop a suitable control strategy?

» First, understand how cooling/heating influence mass distribution in the
system

» Relationship density — pressure

» Understand the ejector working principle

Pressure [bar]
~
o

DeltaP = f(mass flow)

In few words, what should be controlled?

O Tank pressure-temperature (remember independency of those two
properties)
O Flow through the detector - Ejector regulation

0 75 80 85 90 95 100
Specific Enthalpy [kJ/kg]

~Tank pressure
~Passive loop profile
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Dynamic modelling : startup
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Going colder : transcritical mode

04 D15 : : : : : 56
0 Power detector m 0 Ouflet temperalure delector
AR Inlet quality evaporator 0.35 — — — -Setpoint 10°C
I — — — 'Oufletquality evaporator| | = oo - oo oo oo oo oo \ —— Setpoint 0°C
-20 \ — — — 'Receiver pressure 154
103 |
10 b
40
10.25 —
Npm——— 5 9
g o7 lo2 3¢
P S £ s|Setpoint well
g 801 015 8 %
g 2 £ | controlled
00| to1 ¥
-120 + 0.05 °
e e = b
4 — T 0 YR U
7/ 4
~160 : ‘ : : : 005 & €5 ‘ ' ‘ ' ' o
1000 2000 3000 2000 5000 6000 7000 oo 1000 2000 3000 . 4000 5000 6000 7000
Time [s] Time [s]
4.5 T T T 1.1
H HH Pressure lift ejector
Bypass trlgger bOIIIng — — — - Design pressure litt 11.05
at the entrance = Regulation motive via needle _
= 1 E
g 4 =
ke] 1095 8
| R 5 E
: L.; 109 o
B e YR W S S PRGN
- © 35} 1085 <
e o
o 08 =
r. 1 0. o
- / c
o T
[ 10.75 5
3r £
8 107 &
o
Needle to accurate 1065
control discharge 25 L . | . | | 06
1000 2000 3000 4000 5000 6000 7000

pressure

Time [s]

EP-DT
Detector Technologies

90
80
L 2nd Gas cooler 1st Gas cooler

70
T
2
o
% 60
g Critical Point Compressor

50 /- [

Triggering boilin
e y Ejector discharge
Capillary X
40 / Retum line ‘\\\\

30

30 60
Specific Enthalpy [lJ/kg]
—Transcritical cycle (Full power, setpoint 0°C)

90

Similar to traditional CO, ejector supported system except
for particular requirements in the evaporator

120



EP-DT
Detector Technologies

® NTNU 3D model Xenon test-rig
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Thanks for your attention!

Questions?



